<u>\$2</u> External Field Methods 32.1 The Quantum Effective Action Vacuum vacuum amplitude in the presence of currents fr (x): $Z[T] = \langle VAC, out | VAC, in \rangle_{T}$ (1) $= \int \left[\prod_{s,y} d\phi^{s}(y) \right] e^{y} \left(i \left[\phi \right] + i \int d^{4} \phi^{t}(x) f_{r}(x) + \varepsilon \text{ terms} \right)$ the fields of are arbitrary types of fields including fermionic type -> Feynman diagrams now contain vertices to which a single pr-line is attached. vertex : i y, (x) Derivatives of (1) give $\left[\frac{S}{S} \frac{1}{J_{r}(x)} Z(\mathcal{J})\right]_{\mathcal{J}=0}^{\mathcal{J}} = i \int \left[\prod_{r,x} d\phi^{r}(x)\right] \phi^{r}(x) e^{r} p\left\{i \left[\left[\phi\right] + G(\varepsilon)\right]\right\}$ = $i \langle VAC, out | \Phi'(Y) | VAC, in \rangle_{T=0}$ We have the expansion $Z[Y] = \sum_{i=1}^{\infty} \frac{1}{N!} (iW[Y])^{N} = \exp(iW[Y]),$

where
$$i W[J]$$
 is the sum of all connected
vacuum-vacuum amplitudes
Define
 $\Phi_{J}^{r}(x) \equiv \frac{\langle VAC, out | \Phi(x) | VAC, in \lambda_{T}}{\langle VAC, out | VAC, in \lambda_{T}}$ (2)
 $= \frac{-i}{Z[J]} \frac{S}{ST_{J}r(x)} Z[J] = \frac{S}{ST_{ST}(x)} W[\lambda]$
Suppose $\Phi_{J}^{r}(x) = \Phi^{r}(x)$ if $J_{T}(x) = J_{\Phi x}(x)$
Definition:
The "quantum effective action" $T(\Phi)$
is defined by the Legendre transformation
 $T[\Phi] \equiv -\int d^{4}x \Phi^{r}(x) T_{\Phi r}(x) + W[T_{\Phi}]$ (3)

$$\frac{\operatorname{Remark}_{:}}{\operatorname{Note Hat}}$$
Note Hat
$$\frac{\operatorname{ST}[d]}{\operatorname{S}\varphi^{s}(Y)} = -\int d^{4}x \ \varphi^{*}(x) \ \frac{\partial^{4} F_{\varphi *}(x)}{\operatorname{S}\varphi^{s}(Y)} - \mathcal{F}_{\varphi *}(Y)$$

$$+ \int d^{4}x \left[\frac{\partial \mathcal{W}[\mathcal{F}]}{\partial \mathcal{F}_{V}(X)} \right]_{\mathcal{F}} = \mathcal{F}_{\varphi} \ \frac{\partial^{4} F_{\varphi *}(x)}{\operatorname{S}\varphi^{s}(Y)}$$

or using (2):

$$\frac{ST[\Phi]}{S\Phi^{S}(Y)} = -\int_{\Phi S}^{Y}(Y)$$

Thus
$$T[\phi]$$
 is the "effective action"
in the sense that the possible values for
the external fields $\phi(v)$ in the absence
of a current T_{i} are given by the
slationary "points" of T :
$$\frac{sT[\phi]}{s\phi^{s}(v)} = 0 \quad \text{for } T = 0 \quad (4)$$

 \rightarrow equation of motion for ϕ , taking
quantum corrections into account
Zet's replace $T[\phi]$ by $T[\phi]$ in (i) to see
what happens:
 $exp\left\{i W_{T}[T_{i}\phi]\right\}$
 $= \int TId\phi^{r}(x) cop\left\{ig^{-1}[T[\phi]] + \int d^{4}x \phi^{r}(x)T_{i}(x)] + O(\varepsilon)\right\}$
with arbitrary constant g .
 \rightarrow propagator proportional to g
uertices are proportional to V_{0}
 \rightarrow graph with V vertices and I internal lines
is proportional to g^{I-V} .
For any connected graph the #loops is
 $L = I - V + I$

⇒ L-loop term in
$$W_{\Gamma}[J_{1}, g]$$
 has g dependence
 $(W_{\Gamma}[J_{1}, g])_{L & opps} g^{L-1}$
or equivalently
 $W_{\Gamma}[J_{1}, g] = \sum_{k=0}^{\infty} g^{L-1} W_{\Gamma}^{(k)}[J_{T}]$
We are interested in sum of "tree" graphs
(i.e. without loops)
 $\rightarrow W_{\Gamma}^{(0)}[J_{T}]$, i.e. the g $\rightarrow o$ limit of (5)
[In this limit the path integral is dominated
by the point of stationary phase:
 $\exp \left\{ i W_{\Gamma}[J_{1}, g_{T}] \right\} \sim \exp \left\{ i g^{-1} \left[T[\Phi_{R}] + \int d^{k}_{x} \Phi_{T}^{*}(x) T_{T}^{(k)}(x) \right] \right\},$
where $\frac{ST[\Phi]}{S\Phi^{*}(x)} \Big|_{\Phi=\Phi_{S}} = -T_{T}(x)$
 $\cong W_{\Gamma}^{(0)}[J_{T}] = T[\Phi_{S}] + \int d^{k}_{x} \Phi_{T}^{*}(x) T_{T}^{*}(x)$
 $\stackrel{(g)}{=} W[J_{T}]$
This shows that $W[J_{T}]$ may be calculated
by using $T[\Phi]$ in place of $L[\Phi]$ and Keeping
only tree (0-loop) graphs!